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I 1854: Meteorological Dept of the British Board of Trade
created

I “...in a few years .... we might know in this metropolis the
condition of the weather 24 hours beforehand.” (M.J.Ball
MP, House of Commons, 30 June 1854.)

I Response from House: “Laughter”





Why Data Assimilation is Important

I Numerical Weather Prediction (NWP) is (largely) an initial
value problem.

I Has contributed to enormous forecast improvements
I Extracts the maximum value from expensive observations

I Accurate analyses are necessary for getting the most from
field programs.

I Reanalyses of past data using modern methods are an
essential resource for climate research.



Best Linear Unbiased Estimate (BLUE)

I Observations y1 and y2 of a true state xt :

y1 =xt + ε1 y2 =xt + ε2

I The statistical properties of the errors are known:

〈ε1〉 = 0 〈ε21〉 = σ2
1 〈ε1ε2〉 = 0

〈ε2〉 = 0 〈ε22〉 = σ2
2

I Estimate xa of xt as a linear combination of the
observations such that 〈xa〉 = xt (unbiased) and
σ2

a = 〈(xa − xt)
2〉 is minimised (best).

I Then
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Best Linear Unbiased Estimate (cont’d)

I Same estimate found by minimising

J(xa) =
(xa − y1)

2

σ2
1

+
(xa − y2)

2

σ2
2

I Minimising J is the same as maximising exp(−J/2)

I Hence for Gaussian errors the BLUE is the maximum
likelihood (or optimal) estimate.

I For many pieces of data y = (y1, y2, . . . , yn)
T ,

J(xa) = (xa − y)T P−1(xa − y)

where P is the error covariance matrix of y.



Assimilation: The Big BLUE

Assimilation combines a short-term numerical forecast with
some observations:

J(xa) = (xa − xf )
T B−1(xa − xf ) + (H(xa)− y)T R−1(H(xa)− y)

I xa is the analysis
I xf the short-term forecast
I y are the observations
I H produces the analysis estimate of the observed values
I R is the observation error covariance
I B is the forecast error covariance



The Atmospheric Infrared Transmission Spectrum



HIRS (High resolution InfraRed Sounder) Channel
Weights



Finding the minimum of J

J(xa) = (xa − xf )
T B−1(xa − xf ) + (H(xa)− y)T R−1(H(xa)− y)

Solve directly ∇J = 0.
I Have to manipulate big matrices
I Nonlinear H is very difficult (satellite radiances)

Iterative minimisation (a.k.a. variational assimilation).
I Finds full 3-D structure of the atmosphere (3D-Var)
I Other observations and background helps constrain the

poorly-conditioned and underdetermined inversion of the
satellite radiances



Minimising J

J(xa) = (xa − xf )
T B−1(xa − xf ) + (H(xa)− y)T R−1(H(xa)− y)

To minimise J, we need the gradient:

∇J(xa) = 2B−1(xa − xf ) + 2HT R−1(H(xa)− y)

H =
[

∂Hi
∂xa,j

]
is the Jacobian of H (a.k.a. the tangent linear)

HT is the adjoint of H



The Importance of B

J(xa) = (xa − xf )
T B−1(xa − xf ) + (H(xa)− y)T R−1(H(xa)− y)

B is important:
I Conditioning and speed of convergence
I Getting the statistics right
I Describing atmospheric balance
I Spatial scale of analysis

B in the model variables fails miserably:
I Rank deficient
I Too large to store, let alone operate on



B the best you can B

Representing B typically involves:
I Transform to less-correlated variables.

I (u, v) =⇒ (ψ, χ)
I u = −∂ψ/∂y + ∂χ/∂x , v = ∂ψ/∂x + ∂χ/∂y
I Replace mass field by unbalanced mass:
φunbal = φ− φbal(ψ)

I Transform to spectral space.
I Rescale.

These make B diagonal =⇒ good conditioning and
computational efficiency.

I Truncate the small scales. Forecast error spectrum is red,
with little power at small scales. So truncate B.



Incremental Formulation

Replace

J(xa) = (xa − xf )
T B−1(xa − xf ) + (H(xa)− y)T R−1(H(xa)− y)

by

J(δx) = δxT B−1δx + (H(xf ) + Hδx− y)T R−1(H(xf ) + Hδx− y)

where δx = xa− xf and H is the Jacobian of H (tangent linear).
I H(xa) becomes H(xf ) + Hδx
I Computational efficiency since δx now at reduced

resolution of B, H maybe cheaper to compute than H, true
quadratic form.



A Matter of Time

So far all data assumed to be at the analysis time.
I Assimilate e.g. four times a day.
I All data in 6-hour window assumed to occur at the middle

of that window.
I Introduces some errors =⇒ weather systems move and

develop!
I Reduce errors by assimilating more frequently, but that has

its own problems.
A better way is to introduce the time dimension into the
assimilation, 4-dimensional variational assimilation (4D-Var).



Observations at two times

Red: Observations. Blue: 3D-Var. Green: 4D-Var.



4D-Var
Add a term for the later time:

J(xa) = . . .+ (H2(M(xa))− y2)
T R−1

2 (H2(M(xa))− y2)

I M is the model forecast from t1 to t2
I Subscripts 2 refer to the time t2.

The gradient becomes

∇J(xa) = . . .+ 2MT HT
2 R−1

2 (H2(M(xa))− y2)

I HT
2 is the adjoint of the Jacobian of H, takes information

about the observation-analysis misfit from radiance space
to analysis space

I MT is the adjoint of the Jacobian of M and propagates this
gradient information back in time from t2 to t1.



4D-Var

Minimising

J(xa) = (xa − xf )
T B−1(xa − xf )

+ (H(xa)− y)T R−1(H(xa)− y)

+ (H2(M(xa))− y2)
T R−1

2 (H2(M(xa))− y2)

gives an analysis xa at time t1 that
I is close to the background xf at t1
I is close to the observations y at t1
I initialises a (linearised) forecast that is close to the

observations y2 at time t2
Adding additional time levels is straightforward, as is the
incremental formulation (exercise).



4D-Var analysis of a single pressure observation
One pressure observation at centre of low, 5hPa below
background, at end of 6-hr assimilation window.

MSLP analysis
increment at end of
6-hr assimilation
window.

Gustaffson (2007,
Tellus)
NW-SE section of
temperature and wind
increments at start of
6-hr assimilation
window.



In practice ...

This is not a small problem!
I Atmospheric model has O(106 to 107) variables
I Millions of observations per day
I Limited time available under operational constraints

The model has several hundred thousand lines of code, 4D-Var
requires

I operations by the Jacobian of the model
I operations by the adjoint of the Jacobian

Good results require accurately estimating the necessary
statistics (R and B) and careful quality control of the
observations.



Extensions

Multiple “Outer Loops”
I Problem: Accuracy is limited by the linearisations of H and
M.

I Solution: Update the nonlinear forecast (outer loop) several
times during the minimisation of the J(δx) (inner loop).

Multi-incremental 4D-Var
I Problem: Balancing speed of convergence against need to

resolve small scales.
I Solution: Begin minimising with δx at low resolution, and

increase resolution after each iteration of the outer loop.



Extensions: Weak Constraint 4D-Var
I Doesn’t assume that the model is perfect
I Allows a longer window.



Summary
Var is better than direct solution (a.k.a. Optimum Interpolation)
because:

I Can handle lots of observations
I Can better cope with nonlinear observation operator H
I Solves for the whole domain at once

4D-Var is better than 3D-Var because:
I Uses observations at the correct time
I Calculates analysis at the correct time
I Implicitly generates flow-dependent B
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